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A B S T R A C T  

We consider the problem 
(1) ut = u x x + e  u whenx ER, t > O, 

(2) u(x,O) = uo(x) when x e R, 
where uo(x) is continuous, nonnegative and bounded. Equation (1) ap- 
pears as a limit ease in the analysis of combustion of a one-dimensional 

solid fuel. It is known that solutions of (1), (2) blow-up in a finite time T, a 
phenomenon often referred to as thermal runaway. In this paper we prove 
the existence of blow-up profiles which are flatter than those previously 
observed. We also derive the asymptotic profile of u(z, T) near its blow-up 

points, which are shown to be isolated. 

1. I n t r o d u c t i o n  

Cons ider  the  semil inear  pa rabo l i c  equat ion  

(1.1) ut-u~,=e"; xoe(a,b), t>0 ,  

where  - o ¢  <_ a < b < +co .  Equa t ion  (1.1) is one of the  s imples t  models  aris- 

ing f rom combus t ion  theory.  Indeed,  it  is well known (cf. for ins tance  [BE], 

C h a p t e r  I) t ha t  t he rma l  reac t ion  of a one-d imens ional  solid fuel can be descr ibed 

by the sys t em 

(1.2a) 

(1.2b) 

T t =  Txx + ~ c e x p  [ ' ~ ] ,  

ct = -e~I'c exp - - ~  
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where T and c are respectively the fuel temperature and concentration, and 

~, e, F are positive constants. If we assume ~ to be small, 0 < e << 1, and look 

for solutions in the form 

T = l + e u + - . -  

c =  1 - e C 1  + . . .  

we obtain, to the first order, that u satisfies (1.1). Of course, (1.1) and (1.2) 

are to be complemented with suitable initial and boundary conditions to yield 

well-posed mathematical problems. In any case, a major feature of (1.1) is that,  

under suitable assumptions on the size of the set (a, b), positive solutions may 

become unbounded in a finite time, i.e, there exists T > 0 such that 

lim sup(sup u(x, t)) = +oo. 
tTT (a,b) 

We then say that blow-up or thermal runaway occurs at t = T. If this is the case, 

we say that x = x0 is a blow-up point of u(x, t) if there exist sequences {x,},  {t ,},  

such that limn--.oo xn = x0, lim,--.oo t ,  = T and lim,--.oo u ( x , , t ~ )  = +oo. 

In recent years, much attention has been devoted to the question of determinig 

when do solutions of (1.1) exhibit thermal runaway and, in such a case, where are 

the blow-up points located. For instance, conditions under which blow-up occurs 

at a single point have been obtained in [W],[FM]. A further natural question is: 

what is the asymptotic behaviour of solutions near blow-up points as thermal 

runaway is approached. An important step towards ascertaining this point was 

given by J.W. Dold in [D]. Using matched asymptotic expansions techniques, he 

formally derived an expansion for a solution of (1.1) which was assumed to blow- 

up at x = 0, t = T. To describe his result, let us introduce auxiliary variables as 

follows: 

u(x, t) = - ln(T - t) + ¢(z,  r) ,  
x 

(1.3) z = 
((T - t)l ln(T - ,)I)l/2' 

r = - ln(T - *). 

Then Dold claimed that 

(1.4) 

¢(z,r)=_ln[l+Z2"~~..4_) . . . .  5 l n r  z 2 + 4  
8 r 1 + z 2/4 
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for some real constant C, uniformly for z in bounded sets. 

A first rigorous asymptotic result is 

(1.5) lim(u(x(T - t)1/2, t) + ln(T - t )~  = 0, 
tTT \ / 

uniformly on sets Ix[ < R with R > 0, 

which holds under suitable assumptions on the data for the Canchy-Dirichlet 

problem corresponding to (1.1) (cf [BBE]), and is also verified by solutions of the 

Cauchy problem, if the initial value is continuous, nonnegative and bounded (cf. 

for instance [HV1]). Recently, A. Sressan proved in [B1] that, if one considers 

the boundary value problem 

(1.6a) ut = ux, + e" when x0 E [-1,1], t > 0, 

(1.6b) u(+l ,  t) = 0 when t > 0 

(1.6c) u(x, O) -- uo(x) when - 1 _< x0 _< 1, 

then there exist initial values uo(z) such that the corresponding solution 

u(x,t;uo(x)) of (1:6) blows up at x = 0, t = T, and (1.4) holds. Further- 

more, the asymptoties near x = 0, t = T was shown to be stable under small 

perturbations of such data uo(x). 

These results, however, do not preclude the existence of solutions exhibiting 

different blow-up behaviour, although they strongly suggest that, if such solutions 

exist, they should be of an unstable character. To our knowledge, the possibility 

of asymptotics other than (1.4) was first suggested in [GHV], by means of (formal) 

perturbation techniques. We then were able to make such results rigorous in 

[HV1] for the case of the Canchy problem 

(1.7a) u t = u x x + e ~ ;  - c o < x < + o o ,  t > 0 ,  

(1.75) u(x,O) = u0(x); - ~  < x < +oo. 

More precisely, let ~ be a real number, and let ¢(y, r), y, r be given by 

(1.S) u ( x , t ) = - l n ( T - t ) + ¢ ( y , r ) ;  y =  Tx/T-Z-~_t, r = - l n ( T - t ) .  

We proved in [HV1] the following result: 
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THEOREM A: Assume that uo(x) is continuous, nonnegative and bounded. Sup- 

pose also that u(x , t )  solves (1.7), blows up at x = ~, t = T, and is such that 

u(x, t) # - ln(T - t). Then, either 

(1.9a) ¢(y, T ) =  (4zr)'/4V~ H2(Y----~)-t-°( 1 ) v  as r ---~ o o, 

o r  

There exist C # 0 and m > 3 such that 

(1.9b) ¢ ( y , r ) = C e O - - ~ ) ~ H m ( y ) + o ( e ( 1 - - ~  )~) as r - * o c ,  

where convergence takes place in Ciko'• for any k >_ 1 and a e (0, 1), and 

( )  (1.9c) Hm(y) = cm-f-Im , c,, = 2m/2(47r)l/4(m!) 1/2 , 

Jim(s) being the standard m th Hermite polynomial. 

We have obtained in [HV1] a result similar to Theorem A for the problem 

(1.10a) u t = u ~ + u P ;  - c x ) < x  < + c ~ ,  t > 0 ,  p > l ,  

(1.105) u(x ,  0) = u0(x); < x < 

where u o ( z ) i s  as before. See also [FK] for related results. On the other hand, 

in the recent work [BB], J. Bebernes and S. Bricher have used the techniques in 

[FK], [HV1], [HV3] to show that (1.9a) holds for radial solutions of the higher- 

dimensional version of (1.7), provided that Uo(X) E C 2 , radially decreasing, 

and 

(1.11) Auo(x) -F e u°(') >__ O, 

so that ut >_ 0 at any time t > 0. Here we shall prove 

THEOREM 1: (a) Assume that Uo(Z) is continuous, nonnegative and bounded, 

and has a single maximum at some point x = Xo . Then the solution u(x, t) ot 

(1.7) blows up at a single point z = 5: at a time t = T < +co, and (1.9a) holds. 

(b) There exist a continuous, nonnegative and bounded function rio(Z) and a 

constant C > 0, such that the corresponding solution of (1.7), r (z ,  t), blows up 

at x = 0 at some time T > O, and (1.9b) holds with m = 4, i.e, 

(1.12) ¢(y, r) = Ce-~H4(y)  + o(e -~) as r ~ oc in (~k,¢, V l o  c , 
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for any k _> 1 and a 6 (0, 1). 

Concerning Theorem 1, some remarks are in order. Firstly, in part (a) u0(x) is 

not supposed to be symmetric, and assumption (1.11) is not required here. On 

the other hand, our approach relies heavily on the classification of singularities 

given in Theorem A, and makes use of the scaling properties of (1.7a) and various 

a priori estimates. Of those, some are of independent interest, as, for instance, 

the bounds given in Lemmas 2.3 and 2.5 below; in particular, this last enables us 

to dispense with condition (1.11) here. We shall also employ the following result, 

which will be derived in the course of the proof. 

THEOREM 2: Let uo(x), u(x, t)  and T be as in Theorem 1, and assume that 

u(x, t) • - ln(T - t). Then any blow-up point of u(x, t) is isolated. Moreover, if 

x is any such point, we have: 

ff (1.9a) is satisfied, then 

(1.1aa) ( ( Ix- l  
~irn u(x ,T)  +ln  S l l n ( x _ ~ ) [ ] ]  = O. 

If (1.9b) is satisfied, then 

(1.lab.) l i m ( u ( x , T ) + l n ( V c m [ x - Y z , m ) )  =0 .  

where C, m, are as in (1.9b), and c,, is given in (1.9c). 

We should point out that a final-tlme analysis analogous to (1.13) also holds 

for (1.10); cf [HV3]. The fact that the set of initial values for which (1.13a) holds 

is nonempty has been recently proved in [B2]. Also, (1.13a) has been recently 

extended in [BB] for radial solutions of the higher-dimensional version of (1.7) 

under assumption (1.11), whereas the fact that blow-up points are isolated was 

proved in [CM] for some boundary-value problems associated to (1.7a). Notice 

that (1.12) and (1.13b) describe a behaviour near the singularity which is flat- 

ter than that corresponding to (1.9a), (1.13a). This motivates the term plane 

structures in the title of this paper. On the other hand, the existence of flat 

behaviours alike to (1.12) has been previously obtained by us for problem (1.10). 

(cf. Theorem 3.2 in [HV2]). However, the proof of (1.12) here will exhibit some 

differences with respect of that of the corresponding result for (1.10). In some 

cases, these arise from the different scaling properties of (1.7a) and (1.10a), but 
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we shall also use here Theorem 2 to show that, if uo(x) has exactly two peaks, the 

corresponding solution of (1.7) has one or two blow-up points. This was shown 

in [CF] for the case of homogeneous Dirichlet problems in bounded domains, by 

means of a comparison device introduced in [FM] whose use is avoided here. 

2. T h e  proofs 

2.1 PRELIMINARIES. Before going into the details, let us describe heuristically 

the way in which Theorem 1 will be obtained. Let e, h, R be positive numbers, 

and consider the functions 

(2.xa) h, = Ixl0)+ , where s+ = max{s, 0}, 

(2.1b) fi(x, t) = fi(z, t; h, ~),  defined as the solution of (1.7a) satisfying fi(x, 0) = 

~0(z; h, ¢) in R, 

(2.1c) un(x, t) = un(z, t; h, e), defined as the solution of (1.7a) with initial value 

uR( , 0) = - R; h, 

(2.1d) u~(x, t; h, ~), defined as the solution of (1.7a) with initial value u~R(x, O) = 
- R; h, + + R; h, 

We then proceed as follows. By the results of Theorem A, in the neighborhood 

of any blow-up point x, the space structure of ¢(y, r)  (cf (1.8)) is described by 

a Hermite polynomial H,~(y) with m > 2. When R = 0, u~(x,t) is symmetric 

with respect to the origin and has a single maximum at x = 0. Therefore, as the 

number of maxima of solutions of parabolic equations cannot increase in time 

(cf. for instance [A], [AF]), (1.9a) should occur in this case, since H~(y) has a 

single extremum at y = 0. By continuity, we expect that the same will happen 

to u~(x, t) when R > 0 is sufficiently small. On the other hand, if R > 0 is large 

enough, we expect thermal runaway to take place at two distinct points x = -t-x0. 

Comparing the cases R ,,~ 0 and R >> 0, we guess that in both situations u~(x, t) 
would have two maxima for small times. However, while they should coalesce 

into a single one before the blow-up time when R is small, they will remain 

separated until thermal runaway occurs for R large. This last case gives raise 

to two simultaneous explosions of type (1.9a) at two different points. We then 

expect that  an intermediate value R* will exist, such that uR* (x, t) will have two 

maxima for any time t prior to blow-up, when they will collapse into a single one. 

This would correspond to ¢(y, r)  having a space structure given by H4(y) (which 

has exactly two extrema), thus showing the result. These are the ideas behind 



Vol. 81, 1993 PLANE STRUCTURES IN THERMAL RUNAWAY 327 

the proof of the corresponding result for the power-like case (1.10) in [HV2]. 

To carry out such a program, we have introduced some changes here with 

respect to [HV2]. Specifically, the main steps in the proof are the following: 

(i) For any R >_ 0, the blow-up points of u~n(x, t) remain in a bounded set 

(which depends on R). This may be done by adapting the energy method 

in [GK2], Thm 3.5, but we have selected a different method here, which 

makes use of Lemma 2.5 below. 

(ii) Blow-up occurs at isolated points.This is proved as a consequence of The- 

orem 2. 

(iii) For any R _> 0, blow-up occurs at one or two points. We obtain such 

result as a consequence of (i), Theorem A and the fact that, in (1.9b), 

m is even and m > 4 (cf. Proposition 2.4 below), since the number of 

maxima of solutions of (1.1) is nonincreasing (cf [A], [AF]). 

(iv) If R >> 0, there is no blow-up at x = 0, a fact which is obtained again by 

means of Lemma 2.5 . 

(v) The blow-up time of uin(x, t) as well as the location of its blow-up points 

depend continuously on R; cf. Lemmas 2.2 and 2.6 below. 

2.2 THE BASIC TOOLS. We begin by recalling a particular subsolution of (1.7a) 

which will be repeatedly used in what follows. Let f ( x )  be continuous, nonnega- 

tive and bounded, and denote by S ( t ) f  the solution of the heat equation in the 

whole line with initial value f (x) .  Then the function, 

(2.1a) u(x, t; f )  = - l n (exp ( -S ( t ) f (  x) ) - t), 

satisfies, for some T = T ( f )  > O, 

(2.15) u t _ < u ~ + e ~  w h e n x 6 R ,  t 6 ( 0 ,  T). 

(2.1c) u(z,  O) = f ( x )  when z 6 R. 

We shall also need the following lower bounds: 

LEMMA 2.1: Let u o , u , T  and ¢ be as in the statement of Theorem 1. We then 

have, 

If  (1.9a) holds, 

,o(1 
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uniformly on sets [~[ < R with R > O. 

I f  (1.9b) holds, 

(2.2b) l i m i n f ( u ( ~ ( ( T - t ) )  l / ' ' t [ T  , t ) +  l n ( T -  t ) ) >  - in (1 -4- C c m ~ m ) , _  

~ni for~ ly  on sets I~1 <~ R with R > 0, where C, m, ~re as in (1.9b), and 

cm is given in (1.9c). 

Proof'. It is similar to those of Lemmas 6.1 in [HV1] and 2.1 in [HV2], the only 

differences arising from the use of (2.1a) to replace the subsolutions employed in 

those papers. II 

We shall denote henceforth the blow-up time of uiR(x, t) by TR(C, h) or TR, 

according to the context. We next prove 

LEMMA 2.2: TR(e, h) is a continuous fimction of R, h and ~. 

Proo~ For simplicity, we shall only prove continuity with respect to h, the other 

cases being similar. The fact that 

lim infTn(e,  hn) > TR(e, h) 
h,~---*h 

is rather classical; see for instance the argmnent in [H], Th. 3.4.1. However, since 

the proof is short, we shall sketch it here for completeness. Clearly, it suffices to 

show that, for any a > 0 small enough, there exists no such that u(x,t; h,~) is 

bounded for t < T(h) - a , provided that n > no • By assumption, we have that 

u(x, t; h) < M for some M = M(a),  whenever t <_ T(h) - or. On the other hand, 

there exists L = L(a) such that 

I exp(u(x,  t; h . ) )  - exp(u(x,  t; h))] < Llu(:c, t, ;h,,) - u(:r, t; h)h 

as far as u(x, t ;hn)  < 2M and t <_ T(h) - a. 

Using Kato's inequality (Al f  I > A f . s g n f  in D', for f E L~o ¢ with A f  C L~oc), 

we then obtain for (1.7a) that 

lu(x,t; h,,) - u(x,t;  h)l ~ ~L*(suPlu(z, 0; h,,) - u(x, 0; h)l 
zER 

therefore u(x, t ;hn)  < 2M for t < T(h) - a if n is large enough, and the result 

follows. 
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Suppose now that  u(x, t; h) blows up at x = 0 as indicated in (2.2a). We then 

have that ,  for any 6 > 0 and O > 0, there exists K = K(O, 6) such that  

u(x, t; h) >_ - ln(T(h)  - t) - K, uniformly on sets 
(2.4) 

Ixl <_ O((T(h) - t)l ln(T(h)  - t]) 1/2 with T(h) - t <_ 6. 

Take now a sequence {h ,}  with lim,__.~ hn = h. From (2.4) with t =- T(h) - 6 

and s tandard  continuous dependence results, we deduce that ,  if n is large enough, 

(2.5) u ( x , T ( h ) - 6 ; h , ) > _ - l n 6 - 2 K  iflx]<O61/211n611/2. 

Consider now the scaled functions 

(2.6) u~,,(x,t)  = ln5 + u(51/2 x ,T(h)  - 5 + St; h,,). 

It is immedia te  to see that ,  for any 6 > 0 and n = 1 , 2 , . . . ,  u~,, solves (1.7a), 

whereas for large n we have 

u,, ,(x,O) > - 2 K  if I~1-< 011nC/2; 
U~,n(x,O) > In6 if Ixl > 011nSI 1/2 

Therefore  

(2.7) U~,n(X,t) >_ W6(x,t) 

where w6(x,t)  solves (1.Ta) with initial value w~(x, 0) = - 2 K  if Ix I _< 811n 6] 1/2, 

w~(x,O) = ln5 if Ixl > 011nhl 1/2 . Furthermore,  by (2.1), 

u6(z, t) >_ - ln(exp(-S( t )w6(x ,  0)) - t). 

We next  notice tha t  

(2.s) l imS(t)w6(O,t)  = - 2 K ,  
~1o 

To see this, we write 

uniformly for t bounded.  

S ( t ) w , ( O , t ) _  ~-2K f e- , ,d~+---~-~~- ln*  f 
I~l<lln 6It/~ MI>I in ~l~/2 

-- Z, (6)  + h ( 6 ) .  

~L 
e - , ,  d~ 
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It then follows that lim610 I1(~) = - 2 K ,  whereas for t < T* < +oo , 

112(6)1 _< Clln*1112'5°~1c for  some C = C ( T * ) ,  

whence (2.8). We now select ~ > 0 small enough and • > 0 fixed. Taking 

T* = 3e 2K, (2.8) yields then that S(t)w,(O,t) <_ 2e 2K for t _< T*, and w~(x,t) 

blows up in a time T(w) such that T(w) = O(1) as ~ ~ 0. Recalling (2.6), (2.7), 

we obtain 

(2.9) lim s u p T ( h , )  < T(h). 
n - - + O O  

Putting together (2.3) and (2.9), the Lemma follows under our current assump- 

tions. The proof of the remaining cases is similar and will be omitted. | 

We next obtain an a priori bound for blowing up solutions. 

LEMMA 2.3: Let u(x,t) be a solution o/'(1.7) with uo(x) continuous, nonnegative 

and bounded, which blows up at t = T. Then there exists a constant C depending 

on [ u0[ ~ and T, such that 

C 
(2.10) u(x, t) <_ - ln(T - t) + 

I l n ( 1  - 

Proof: Let ul(x,t), u2(x,t) be two real functions. Following [GP], we say 

that r is an intersection point of u l, u 2 at time t = to if u l (r, t0) = u2(r ,  t0),  and 

(ul (x, t0 ) -u2(x ,  to)) changes sign when x passes through the value x = r. Assume 

now that T = 1, and uo(x) e CI(R) with maxxea u0 (z )+  max~e~ ]U~o(X)] < K < 

+oo . Let ~o(x; h,e) be the function defined in (2.1a). Clearly, by selecting 

and h in a suitable way, we may impose that uo(x) and ~,(x; h, ~) have exactly 

two intersections. Furthermore, by varying e or h, we may also obtain that the 

blow up time of ~(x,t) given in (2.1b) be equal to one. Since the number of 

intersections between u and fi cannot increase in time (cf. for instance [GP], 

[HV2]) and both solutions blow-up at t = 1, we deduce that 

u(0,t)  _< fi(0,t) for any t e (0,1) 

and, by (1.9), 
B 

u ( o , t )  _< t )  _< - l n ( 1  - t )  + 
I l n ( 1  - t ) l '  
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for some B > 0. We now repeat the previous argument with ~2(x; h, ¢) replaced 

by qo(x-x0; h,e), to deduce that (2.10) holds when T = 1. The case where T # 1 

is obtained by scaling. Indeed, if u(x, t) solves (1.7a), then for any A > 0, 

(2.11) u~(x, t) = In A + u(V~x,  At) 

is also a solution of (1.7a). Setting A = T, the general form of (2.10) follows in 

our case. Finally, the regularity assumptions on uo(x) can be dispensed with, 

since they hold for any t > 0 by standard parabolic theory. | 

As a first application of Lemma 2.3, we now derive the following result which 

completes Lemma 2.1 by extending the convergence stated in Theorem A to 

larger regions. 

PROPOSITION 2.4: Let Uo, u, T and ¢ be as in the statement of Theorem 1. We 

then have: 

If (1.9a) holds, 

(2.12a) l im~u(~((T--t)l ln(T--t)])l /z , t) t tT[ + l n ( T - t ) }  = - l n  ( 1 +  ~ - ) ,  

uniformly on sets [~1 < R with R > O. 

xf (1.95) ho ds, 

(2.12b) ~ i T ~ { u ( ~ ( T - t ) - ~ , t ) + l n ( T - t ) } = - l n ( l + C c m ~ m  ) 

uniformly on sets 1~[ <_ R with R > 0 where C > O, m is an even number, m >_ 4, 

and cm is given in (1.9c). 

Proof." Once (2.2) and (2.10) have been obtained, the proof is entirely similar 

to that in [HV1], Section 6 and [HV2], Section 2 for the power-like case (1.10). 

The fact that now C > 0 and m is even, m > 4 (instead of the weaker conditions 

in (1.95)) follows at once, since otherwise (2.10) would not hold. | 

Remark: Estimate (2.12a) has been obtained in [HV1] under the assumptions 

that uo(x) has a single maximum at some point x = x0 and is symmetric with 

respect to x0. | 

Let T, a, b, e and p be positive real numbers such that a < b, and consider the 

boundary value problem 

(2.13a) ut = uxx + e ~ when a < x < b,0 < t < T, 

(2.13b) u ( a , t ) = u ( b , t ) = f ( t )  f o r 0 < t < T ,  

(2.13c) u(x, O) = g(x) for a < x < b, 
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where 

(2.14a) f ( t )  = - ln(T - t) + e, 0 < t < T, 

{ - l n T + e ,  i f a < x < ~ Z o r ~ < x < b ,  
(2.14b) g(x) = 

- / ~ ,  if ~ < x < 3(b-a) 
4 

We now have 

LEMMA 2.5: Assume that a and b are fixed, and let z (x , t )  be a solution of 

(2.13a) such that z ( z , t )  <_ f ( t )  in Q = [a,b] × [0, T) and z(x,O) <_ g(x) for 

x E [a, b], where f and g are given in (2.14). Then there exists # > 0 such that, 

for c > 0 small enough, z(x, t) blows up at most at x = a, b, at time t = T. More 

precisely, there exists a function F(  x ) = F( x ; a, b, ~, #) such that F( x ) is bounded 

in compact subsets of (a, b), there exists limtTT z(x, t) = z(x,  T)  for x E (a, b), 

and z(x, t) <_ F(x)  in (a, b) x (0, T]. 

Proof" It is a straightforward modification of that of Proposition 3.1 

in [HV2]. | 

Notice that in Lemma 2.5, z(x, t) will be negative somewhere in Q. However, 

only the upper bound there is nontrivial, since z is bounded below by a caloric 

function in Q. 

2.3 FINAL-TIME ANALYSIS. We shall give here the proof of Theorem 2. To this 

end, we analyze the case where (1.9a) holds, and set ~ = 0 for simplicity. We 

then consider the family of scaled functions 

v~(x,t) = ln(T - s) + u(A(s) + x (T  - s ) l /2 ,s  + t (T  - s)), 
(2.15a) 

with A(s) = ~((T - s)] ln(T - s)D 1/2, ~ > 0 fixed and 0 < s < T, 

where 

(2.15b) ( T -  < 
-- 2 ' 

i.e. Ixl_  lln(T- )1 

Taking into account (2.12a), we readily see that 

( v s ) ~ = ( v ~ ) ~ + e  ~° for x E R ,  0 < t < l ,  

(A(s)  + x ( T  - s)1/2) 2 '~ v,(x,0) = - ln 1 + o(1) a s s T T .  
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Therefore, for any 5 > 0, there exists so > 0 such that, if s > so, 

(2.16) - I n  1 +  1 6 ] + 5 < v ~ ( x , O ) < - l n  1+~-~ +5,  

uniformly for x satisfying (2.15b) with ( > 0 fixed. On the other hand, by Lemma 

2.3, it follows that, for T - s _< 1, 

C 
(2.17) v~(x , t )_<- ln (1 - t )+ l ln (T_ t )  I for some C > 0. 

Set now In = [-n,n], n = 1 ,2 , . . . ,  and for any fixed n, let en, #n, be the 

corresponding parameters in Lemma 2.5. Using such a result, as well as (2.16) 

and (2.17), we deduce that there exists a constant Mn such that 

(2.18) v~(x, t )<M, i n Q : [ - 2 , 2 ]  ×[0,1 ]. 

Notice that this implies at once that the blow-up point x = 0 is isolated. 

We next derive a lower bound to complement (2.18). To proceed, we notice 

that, by (2.15), (2.16), 

.~(~, t) ___ ~ ( ~ ,  t) 

where 

(2.19a) 

(w~),  - (w , )x~  = o 

(2.19b) 

in ~= {(x,t):lxl< ~lln(T-s)l~/2,0<t < l}, 

w ~ ( x , t ) - - ~ ( s ) = l n ( T - s )  at x - - - ~ l l n ( T - s ) l  1/2, 0 < t < l ,  

(2.19c) 

( -~6 2 )  ( l n ( T  s)l 1/~. w~(x ,O)=b(~)- - ln  1 +  + 5  for Ixl<~l - 

Let 0E denote the parabolic boundary of E. Then OE = ll + 12 + 13, where 

~ l l n ( T - s ) l ' / 2 , 0  < t  < 1}, l l  = { ( x , t )  : x = - ~  

~ l l n ( T -  s)l ' / 2 , 0  < t < 1}, 12 = { ( ~ , t ) :  x = 

la = {(z,0) : fxl < ~lln(T-s)ll/u}. 
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Then ws(x,t) = w,(x,t) + w2(x,t) + w3(x,t), where for i = 1,2,3, wi(x,t) is 

the solution of the heat equation in ~ such that wi(x, t) = 0 in 1 i if i # j ,  

w,(x,t) = a(s) in ll, w2(x,t) = a(s)in 12, and w3(x,t) = b(~) in 13. Clearly, it 

will suffice to derive in detail a lower bound for wl (x, t). To this end, we notice 

that, since we are assuming s close to T, 

w,(~,t)  >_ ~,(~,t) in r~ 

where 

(zl)t-(z,)~=O whenx>-~lln(T-s)[ ~/2, 0 < t < l ,  

z(-~,ln(T-s)[1/2,t) = i n ( T - s )  when 0 < t < 1, 

z , (x ,0)  = 0 for x>-~lln(T-s)l. 
Thus, by standard results, 

Zl(X,t) =Cln(T-  s)(x + ~[ln(T- s)[ 1/2) 

t (_ 
0 

where, here and henceforth, C denotes a generic constant, independent of 

~, T or s. Performing the change of variables 

x + ~lln(T - s)l '/2 
Z ~  

2 ~ / t  - s 

and recalling that 
O 0  

e - r2  dr  ~ e -y2 
2y 

y 

y ~ ~ ,  we obt~n 

C In(T s)l ' /~(T s)'0~ w~(~,t) >_ z , ( ~ , t )  >_ - - ~ I  - - 

w h i c h  goes to zero as s 1" T for fixed ~ > 0. Arguing in a similar way for w2, ws, 

we arrive at 

(2.20) V~(X,t)>--Cn in Q , , =  [ - 2 , 2 ]  x [0 ' l ]  
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if s is close enough to T. From (2.18) and (2.20), wc deduce that there exists 

K .  < + ~  such that 

Iv~(x,t)l _< K .  < +oo in Q- 

whence; by Schauder estimates, 

a a 2 

- '  " " [6,1], uniformly as s T T, for any 6 E remain bounded in the set Q.,8 = [ - $ ,  ~] x 

(0,1). It then follows that there exists a subsequence, also denoted by {v,(x, t)}, 

and a function {L,(x, t)}, such that 

(2.21a) vs(x,t)  ~ ~ . (x , t )  as s T T, 

uniformly on Qn,6 for any 6 E (0,1). 

(2.21b) (9.),  = ( ~ . ) . = + e  TM in ( 3 '  3 )  x ( 0 ' l ) "  

Moreover, a classical barrier argument (el. for instance [HV3]) shows that 

(2.21c) lim~,(x,t)qr = --In 1 + --~ , uniformly in -- 4 '  4 " 

Letting now n ---* cx~, a standard diagonal argument shows that there exists a 

subsequence, again labelled as {vs(x, t)}, and a function ~(x, t) such that 

(2.22a as s T T, uniformly on compact sets of R x (0, 1),) vs(x, t) ---* ~(x, t) 

(2.22b) vt = v ~  -I- e v in R × (0,1), 

Furthermore, there exists 6' > 0 such that 

6" 
(2.226) I~(x, OI _< ~ ( 1  + Ixl). 

V t - ~  
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To check (2.22d), we just remark that, arguing as in [GK1], one readily obtains 

that if u(x,t) solves (1.7a) and blows up at t = T, then 

O-~xx(X , t) <_ C ( T -  t )- 'P for some C > 0, 

which yield (2.22d) for vs(x,t), and the sought-for result follows at once by 

passing to the limit along the considered subsequenee. We deduce from (2.22) 

that 

( ) O ( x , t ) = - l n  l + ~ - t  

whence 

(2.23) vs (x , t )=- ln  l + - ~ - t  +o(1) a s s T T  

uniformly on compaet subsets of l( x [0, 1]. 

In particular, setting x = 0 and t = 1 in (2.23), we obtain 

( 2 . 2 4 )  ,, ( ( ( T  - ,)1 l n ( T  - s ) l )  1/~, T = - l n ( r  - s )  - In -~- + o (1 )  a s  s T T. 

If we now write y = ( ( (T  - s)l l n ( T  - s ) l ) ' / 2  , we readily see that 

Y~ as s T T. 
( T  - ~) _ 2~1  in  MI 

Substituting this in (2.24), we arrive at 

u ( y , T ) = - l n  Ytl +o(1)  as s T T, 

whence (1.13a) with ~ = 0. As to (1.13b), it is obtained in a similar way: we 

merely replace A(s) in (2.15a) by X(s) = ~(T - s) 1/2 and argue as before. | 

2.4 TIlE EXISTENCE OF PLANE STRUCTURES. Let un(x,t) be the function de- 

fined in (2.1c). It is well known that, for any fixed R,¢ and h, ua(x,t) blows up 

in a time T1 (R) < +oc. We now claim that 

R 
(2.25) There exists M > 0 such that un(x,t) <_ M if tz - R] _> 

To derive (2.25), we just notice that,  by symmetry, un(x, t) blows up at z = R, 

whereas for t > 0, ~n(x , t )  > 0 i f x  < R a n d  0~0xa~(x,t~j < 0 i f x  > R. By 
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Theorem 2, the blow-up point x = R is isolated. Therefore, if there would be 

0u should another blow-up point somewhere, say at x = R1, the derivative b'TR 

change sign between x = R and x = R1, thus giving a contradiction. 

Consider now the solution u~n(x, t) given in (2.1d). Clearly, u~(x, t) blows up 

at a time T(R) <_ T~(R). Actually, it can be shown that T(R) < T~(R), but we 

do not need strict inequality here. We next show that 

For any R > 0, there exist _~r > 0 and D > 0 such that 

(2.26) u~n(x,t) < M if lxl _> D. 

To show (2.26), we first assume that T(R) < T1 (R) and consider the scaled 

function 

( T ( R ) ~  +[ ' [T(R) '~  1/2 T(R)t'~ 
(2.27) +vRt, 

which blows up at t = TI(R). Set now z = vn - UR. Clearly, 

zt = z~x + C(x, t )z  when x E R, t ( T I ( R )  

where 
err  _ e u R  

c(z,t) if . .  ¢ u . ,  c ( x , t )  ___ 0, 
V R  - -  U R  

By Lemma 2.3, we have that for any fixed s < TI(R), 

C(x, t) <_ L for x E R ,  t < s, where L = L(s). 

On the other hand, 

f / T ( R )  '~l/2 ,~ 
_< -,<,<(x,o), 

and ~.(x,O) is compactly supported and bounded. We then conclude that for 

t < s < TI(R), there exist D1 > 0 and H > 0 such that 

HeLl ( S -(=-4,)2d~ i -(=-')2 ) (2.28a) z(x,t)  <_ (47rt),/-------- i e + e 4, d~ 
I~-aI<_D~ I~+al<D~ 

and, since [x-~ l  _> I x - R i - i R - ~ I  >_ ½1x-RI if I z - R  I >_ 2D1 and I ~ - R  I _< D1, 

we readily check that 

(2.285) i e -(:~)' d~ _~ 2Die -(~:~)~ 

[~-RI<D1 
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and arguing similarly for the second integral in (2.28a), we obtain 

AeLS ( I~-R)2 _ (~+n) 2 ) 
z ( x , t ) <  (47rt)1/-------- ~ e-  ,6, +e  ~6, i f t < s < T l ( R ) .  

In particular, z(x,t)  <_ M if Izl is large enough. As vR = vR --UR+UR, this gives 

(2.29) There exists D~ > 0 such that vR(x,t) < 2M if Ixl >~ D~. 

Let now y E R and s < 7"1 (R) be given, and consider the function 

(2.30) vs(x, t; y) = ln(T - s) + vR(y + (T~(R) - s) 1/2, s + t(T,(R) - s)) 

It is readily seen that there exists C > 0, independent of y and s, such that 

(2.31a) vs(x,t ;y) < - l n ( 1 - t )  + 
C 

I ln(TI(R) - s)l 

(2.31b) vs(x, 0;) = ln(Tx(R) - s) + 2M, provided that lY[ is large enough. 

Consider now the cylinder Q1 = [-1,1] x [0,1], and let ~, # be the corresponding 

parameters in Lemma 2.5. We then deduce that, if s is close enough to T1 (R), 

there exists N > 0 such that vs(0, 1) < N. Recalling (2.30), we conclude that 

vR(y, TI(R)) <_ N - ln(T, (n) - s) < +oc, 

if [y[ is large enough. Taking into account (2.27), (2.26) follows. 

If we assume T(R) -- 7"1 (R), the proof of (2.26) is straightforward. 

As a consequence of (2.26), it follows that for any solution v~R(x, t), blow- 

up occurs in a compact set (which obviously depends on R). By Theorem 2, 

singularities appear at isolated points, and, by symmetry, blow-up occurs at 

x = 0 or at two points x = +x0. We now prove that 

(2.32) If R > 0 is large enough, 

v~R(x, t) remains bounded at x = 0 for any t < T(R). 

Actually, (2.32) follows from a minor modification of our previous argument: we 

just need to check that, as R1 ~ 0¢, the constant D1 in (2.28) remains bounded. 

By (2.27), this last is a consequence of the fact that 1 > T(R) _ ~ > # > 0 f o r s o m e  

constant #, as can be seen by comparing v~(x, t) with the solution of (1.7a) with 

initial value equal to h (cf (2.1)). 
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Having shown (2.26) and (2.32), we now conclude as in the power-like case 

considered in [HV2]. It is immediate to see that, for R = 0, v*R(x,t ) blows up 

at x = 0 only, and the same happens if R > 0 is small enough. This last can 

be proved by using Lemma 2.2 and standard interior estimates to derive that 
02u -gTr~R(O,t) < 0 if to < t < T(R) for some to > 0. We then define 

R.  = sup{R > 0 : blow-up occurs only at x = 0}. 

Three possible cases arise now 

(i) Collapse of maxima of uR. (x, t) occurs before blow-up at z = 0. 

(ii) There is a single-point blow-up at x = 0, but for any t < T(RT) , un.  (x, t)  

has two maxima. 

(iii) blow-up takes place at two symmetric points, x --- +x0 • 

Case (i) is easily ruled out by means of a continuity argument (involving Lemma 

2.2 as before). As to (iii), it will be excluded as a consequence of our next result: 

LEMMA 2.6: Let Ro be such that U~Ro(X,t) blows up at x = +xo • Then, for 

any a E (0, [z0[), there exists 71 > 0 such that ua(x , t )  blows up outside of  the 

interwa/ [ - a ,  a] provided that [ R -  R0[ < 7/. 

Proof: We consider again the scaled function va(x , t )  given in (2.27) with TI(R) 

replaced by T(Ro). By assumption, uao(x,t)  _< M < +oo if Ix[ < 0-1 < [x0[ for 

some constants M and al .  Therefore, if [R - R0[ is small enough, there exists 

a~ < al such that 

vR(x, t )  <_ 2M if Ixl <_ a~, t _< 1. 

For any given A > 0, we now rescale as follows: 

vR,x(x,t) = lnA + VR(X/Ax,1 - ~ + At). 

Selecting A small enough, we deduce from Lemma 2.5 that vR,x(x,t) 

stays bounded above in a cylinder Q" = f -a2 ,  a2] × [0,1] for some a2 < al ,  

whence the result. | 

END OF THE PROOF OF THEOREM 1. We have shown that,  out of cases (i), 

(ii) and (iii) above, only (ii) can occur. Then, by our previous results, the space 

structure of CR* (Y, r )  (cf (1.8)) must correspond to (1.9a) or (1.9b) with m = 4, 
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since Hm(y)  has more maxima than Cn* when m >__ 6. Assume now that CRo (y, ~') 

behaves as indicated by (1.9a). 
0 2 Then b-~y CR.(0, r )  < 0 for large enough r ,  which contradicts the fact that 

Cn* (Y, r )  has a minimum at y = 0 by (ii). | 
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